`
king_tt
  • 浏览: 2084067 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

Python 学习入门(21)—— 线程

 
阅读更多

本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例。

1. 线程基础

1.1. 线程状态

线程有5种状态,状态转换的过程如下图所示:


1.2. 线程同步(锁)

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程与锁的交互如下图所示:


1.3. 线程通信(条件变量)

然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程"create"创建的。如果"set"或者"print" 在"create"还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是"set"和"print"将需要一个无限循环——他们不知道"create"什么时候会运行,让"create"在运行后通知"set"和"print"显然是一个更好的解决方案。于是,引入了条件变量。

条件变量允许线程比如"set"和"print"在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉"set" 和"print"条件已经有了,你们该起床干活了;然后"set"和"print"才继续运行。

线程与条件变量的交互如下图所示:


1.4. 线程运行和阻塞的状态转换

最后看看线程运行和阻塞状态的转换。


阻塞有三种情况:
同步阻塞是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态;
等待阻塞是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定;
而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。

tips: 如果能理解这些内容,接下来的主题将是非常轻松的;并且,这些内容在大部分流行的编程语言里都是一样的。(意思就是非看懂不可 >_< 嫌作者水平低找别人的教程也要看懂)


2. thread

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import thread
import time

# 一个用于在线程中执行的函数
def func():
    for i in range(5):
        print('func: ' + str(i))
        time.sleep(1)
    
    # 结束当前线程
    # 这个方法与thread.exit_thread()等价
    # 当func返回时,线程同样会结束
    thread.exit() 
        
# 启动一个线程,线程立即开始运行
# 这个方法与thread.start_new_thread()等价
# 第一个参数是方法,第二个参数是方法的参数, 方法没有参数时需要传入空tuple
thread.start_new(func, ()) 
 
# 创建一个锁(LockType,不能直接实例化)
# 这个方法与thread.allocate_lock()等价
lock = thread.allocate()
 
# 判断锁是锁定状态还是释放状态
print("locked: " + str(lock.locked()))          # False
 
# 锁通常用于控制对共享资源的访问
count = 0
 
# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
if lock.acquire():
    print("locked2: " + str(lock.locked()))     # True
    count += 1
    print("count: " + str(count))
    # 释放锁
    lock.release()
 
# thread模块提供的线程都将在主线程结束后同时结束
time.sleep(6)
    
if __name__ == '__main__':
    pass

运行结果:

locked: False
func: 0
locked2: True
count: 1
func: 1
func: 2
func: 3
func: 4

thread 模块提供的其他方法:
thread.interrupt_main(): 在其他线程中终止主线程。
thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。

thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。

由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。


3. threading

threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

threading 模块提供的常用方法:
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类:
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

3.1. Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
Created on Dec 11, 2013

@author: homer
'''

import threading
 
# 方法1:将要执行的方法作为参数传给Thread的构造方法
def func():
    print 'passwd by func()'
 
t = threading.Thread(target=func)
t.start()
 
# 方法2:从Thread继承,并重写run()
class MyThread(threading.Thread):
    def run(self):
        print 'extended by class'
 
t = MyThread()
t.start()
运行结果:

passwd by func()
extended by class

构造方法:
Thread(group=None, target=None, name=None, args=(), kwargs={})
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 线程名;
args/kwargs: 要传入方法的参数。

实例方法:
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。
get/setName(name): 获取/设置线程名。
is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。
start(): 启动线程。
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import threading
import time
 
def context(tJoin):
    print 'in threadContext.'
    tJoin.start()
    
    # 将阻塞tContext直到threadJoin终止。
    tJoin.join()
    
    # tJoin终止后继续执行。
    print 'out threadContext.'
 
def join():
    print 'in threadJoin.'
    time.sleep(1)
    print 'out threadJoin.'
 
tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,))
 
tContext.start()

运行结果:

in threadContext.
in threadJoin.
out threadJoin.
out threadContext.

3.2. Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法:Lock()

示例:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import threading
import time
 
data = 0
lock = threading.Lock()
 
def func():
    global data
    print '%s acquire lock...' % threading.currentThread().getName()
    
    # 调用acquire([timeout])时,线程将一直阻塞,
    # 直到获得锁定或者直到timeout秒后(timeout参数可选)。
    # 返回是否获得锁。
    if lock.acquire():
        print '%s get the lock.' % threading.currentThread().getName()
        data += 1
        time.sleep(2)
        print '%s release lock...' % threading.currentThread().getName()
        
        # 调用release()将释放锁。
        lock.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
运行结果:
Thread-1 acquire lock...
Thread-1 get the lock.
Thread-2 acquire lock...
Thread-3 acquire lock...
Thread-1 release lock...
Thread-2 get the lock.
Thread-2 release lock...
Thread-3 get the lock.
Thread-3 release lock...

实例方法:
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

3.3. RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:
RLock()

实例方法:
acquire([timeout])/release(): 跟Lock差不多。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import threading
import time
 
rlock = threading.RLock()
 
def func():
    # 第一次请求锁定
    print '%s acquire lock...' % threading.currentThread().getName()
    if rlock.acquire():
        print '%s get the lock.' % threading.currentThread().getName()
        time.sleep(2)
        
        # 第二次请求锁定
        print '%s acquire lock again...' % threading.currentThread().getName()
        if rlock.acquire():
            print '%s get the lock.' % threading.currentThread().getName()
            time.sleep(2)
        
        # 第一次释放锁
        print '%s release lock...' % threading.currentThread().getName()
        rlock.release()
        time.sleep(2)
        
        # 第二次释放锁
        print '%s release lock...' % threading.currentThread().getName()
        rlock.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
运行结果:
Thread-1 acquire lock...
Thread-1 get the lock.
Thread-2 acquire lock...
Thread-3 acquire lock...
Thread-1 acquire lock again...
Thread-1 get the lock.
Thread-1 release lock...
Thread-1 release lock...
Thread-2 get the lock.
Thread-2 acquire lock again...
Thread-2 get the lock.
Thread-2 release lock...
Thread-2 release lock...
Thread-3 get the lock.
Thread-3 acquire lock again...
Thread-3 get the lock.
Thread-3 release lock...
Thread-3 release lock...

3.4. Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法:
Condition([lock/rlock])

实例方法:
acquire([timeout])/release(): 调用关联的锁的相应方法。
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import threading
import time
 
# 商品
product = None
# 条件变量
con = threading.Condition()
 
# 生产者方法
def produce():
    global product
    
    if con.acquire():
        while True:
            if product is None:
                print 'produce...'
                product = 'anything'
                
                # 通知消费者,商品已经生产
                con.notify()
            
            # 等待通知
            con.wait()
            time.sleep(2)
 
# 消费者方法
def consume():
    global product
    
    if con.acquire():
        while True:
            if product is not None:
                print 'consume...'
                product = None
                
                # 通知生产者,商品已经没了
                con.notify()
            
            # 等待通知
            con.wait()
            time.sleep(2)
 
p = threading.Thread(target=produce)
v = threading.Thread(target=consume)
v.start()
p.start()
运行结果:
produce...
consume...
produce...
consume...
produce...
consume...
produce...
consume...
。。。

3.5. Semaphore/BoundedSemaphore

Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法:
Semaphore(value=1): value是计数器的初始值。

实例方法:
acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。
release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import threading
import time
 
# 计数器初值为2
semaphore = threading.Semaphore(2)
 
def func():
    
    # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
    print '%s acquire semaphore...' % threading.currentThread().getName()
    if semaphore.acquire():
        
        print '%s get semaphore' % threading.currentThread().getName()
        time.sleep(4)
        
        # 释放Semaphore,计数器+1
        print '%s release semaphore' % threading.currentThread().getName()
        semaphore.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t4 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
t4.start()
 
time.sleep(2)
 
# 没有获得semaphore的主线程也可以调用release
# 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
print 'MainThread release semaphore without acquire'
semaphore.release()
运行结果:
Thread-1 acquire semaphore...
Thread-1 get semaphore
Thread-2 acquire semaphore...
Thread-2 get semaphore
Thread-3 acquire semaphore...
Thread-4 acquire semaphore...
MainThread release semaphore without acquire
Thread-3 get semaphore
Thread-1 release semaphore
Thread-2 release semaphore
Thread-4 get semaphore
Thread-3 release semaphore
Thread-4 release semaphore


3.6. Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法:
Event()

实例方法:
isSet(): 当内置标志为True时返回True。
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。
clear(): 将标志设为False。
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import threading
import time
 
event = threading.Event()
print("isSet: " + str(event.isSet())) 
 
def func():
    # 等待事件,进入等待阻塞状态
    print '%s wait for event...' % threading.currentThread().getName()
    event.wait()
    
    # 收到事件后进入运行状态
    print '%s recv event.' % threading.currentThread().getName()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start()
 
time.sleep(2)
 
# 发送事件通知
print 'MainThread set event.'
event.set()
print("isSet2: " + str(event.isSet())) 
运行结果:

isSet: False
Thread-1 wait for event...
Thread-2 wait for event...
MainThread set event.
isSet2: True
Thread-2 recv event.
Thread-1 recv event.


3.7. Timer

Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法:
Timer(interval, function, args=[], kwargs={})
interval: 指定的时间
function: 要执行的方法
args/kwargs: 方法的参数

实例方法:
Timer从Thread派生,没有增加实例方法。

1
2
3
4
5
6
7
8
# encoding: UTF-8
importthreading
deffunc():
print'hello timer!'
timer =threading.Timer(5, func)
timer.start()

3.8. local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import threading
 
local = threading.local()
local.tname = 'main'
 
def func():
    local.tname = 'not main'
    print local.tname
 
t1 = threading.Thread(target=func)
t1.start()
t1.join()
 
print local.tname
运行结果:

not main
main


熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
@author: homer
@see: ithomer.net
'''

import threading
 
alist = None
condition = threading.Condition()
 
def doSet():
    if condition.acquire():
        print(threading.current_thread().getName())
        while alist is None:
            condition.wait()
            
        print("len(alist) = " + str(len(alist)))    # 10
        for i in range(len(alist))[::-1]:
            alist[i] = i
        condition.release()
 
def doPrint():
    if condition.acquire():
        print(threading.current_thread().getName())
        while alist is None:
            condition.wait()
        for i in alist:
            print i,
        print
        condition.release()
 
def doCreate():
    global alist
    if condition.acquire():
        print(threading.current_thread().getName())
        if alist is None:
            alist = [0 for i in range(10)]
            condition.notifyAll()
        condition.release()
 
tset = threading.Thread(target=doSet, name='tset')
tprint = threading.Thread(target=doPrint, name='tprint')
tcreate = threading.Thread(target=doCreate, name='tcreate')
tset.start()
tprint.start()
tcreate.start()

运行结果:

tset
tprint
tcreate
0 0 0 0 0 0 0 0 0 0
len(alist) = 10

tset
tprint
tcreate
len(alist) = 10
0 1 2 3 4 5 6 7 8 9




博客之星评选,请投我一票:

http://vote.blog.csdn.net/blogstaritem/blogstar2013/sunboy_2050


分享到:
评论

相关推荐

    Python编程入门经典

    第21章 集成Java与Python 459 21.1 在Java应用程序中编写 脚本 460 21.2 比较各种Python实现 461 21.3 安装Jython 461 21.4 运行Jython 461 21.4.1 交互地运行Jython 461 21.4.2 运行Jython脚本 463 21.4.3 控制...

    EduCoder实践课程——Python程序设计入门答案

    以前没有学过,可能是之前有过acm经验,感觉Python挺好入门的,把自己学习过程中的代码记录下来,一是为了自己写报告方便,二来大家可以作为参考代码,如果有更好的代码可以留言,大家相互学习。本文持续更新~ 1、...

    Python实现web服务器入门学习笔记(4)——单进程单线程非阻塞实现并发及其原理

    在Python实现web服务器入门学习笔记(3)——多进程、多线程实现并发HTTP服务器中,我们知道可以分别通过多进程、多线程的方式实现并发服务器,那么,是否可以通过单进程单线程的程序实现类似功能呢? 实际上,在...

    冲击顶级Python架构师 Python超级全栈架构师开发课程 基础+运维+高级开发+算法+项目

    冲击顶级Python架构师-Python超级全栈架构师开发课程,是一套系统化非常强的Python实战课程,课程数目超过了400多集,课程帮助同学们从零基础开始学习Python基础课程,Python高级进阶课程,Python的进程和线程,数据...

    Python实现web服务器入门学习笔记(6)——多进程实现并发HTTP服务器的面向对象封装

    在Python实现web服务器入门学习笔记(3)——多进程、多线程实现并发HTTP服务器中,已经学习了如何通过多进程、多线程实现并发HTTP服务器,但当时是以实现功能为导向,并未使用面向对象的封装,本文记录一下如何对...

    【Python入门基础】常用数据结构(二)——元组,集合及字典

    另一方面因为没有任何一个线程能够修改不变对象的内部状态,一个不变对象自动就是线程安全的,这样就可以省掉处理同步化的开销。如果不需要对元素进行添加、删除、修改的时候,可以考虑使用元组,如果一个方法要返回...

    Python 核心编程 目录

     学习更多的高阶内容,如正则表达式、网络、多线程、图形用户界面、Web/CGl和Python扩展等  包括几个全新的章节,关于数据库、网络客户端、Java/Jytt30n和Microsoft Office等  展示数以百计的代码片段、交互...

    学习Python爬虫的几点建议

    爬虫是大家公认的入门Python​最好方式,没有之一。虽然Python有很多应用的方向,但爬虫对于新手小白而言更友好,原理也更简单,几行代码就能实现基本的爬虫,零基础也能快速入门,让新手小白体会更大的成就感。因此...

    Node.js 实战

    , ——袁锋(@Python发烧友)某网数据产品部资深Web开发工程师,CNode.org社区核心成员, 如果你想用Node.js快速开发一个个人博客;如果你想用Node.js做一个爬虫程序,定时获取你想要的东西;如果你想用Node.js打造...

    精通Qt4编程(第二版)源代码

    另外,还有一些开源的在其他语言上的Qt绑定,如C#/Mono的绑定Qyoto,Python的绑定PyQt,Ruby的绑定QtRuby等。有了这些产品,编写Qt程序不再是C++程序员的专利了。 \Qt的发行版本有商业版和开源版。开源版遵循QPL(Q...

    精通qt4编程(源代码)

    另外,还有一些开源的在其他语言上的Qt绑定,如C#/Mono的绑定Qyoto,Python的绑定PyQt,Ruby的绑定QtRuby等。有了这些产品,编写Qt程序不再是C++程序员的专利了。 \Qt的发行版本有商业版和开源版。开源版遵循QPL(Q ...

    漫谈大数据第四期-storm

    Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。更棒的是你可以使用任意编程语言来做开发。 Storm的主要特点如下: 简单的编程模型。类似于MapReduce降低了并行...

Global site tag (gtag.js) - Google Analytics